Active modules for multilayer weighted gene co-expression networks: a continuous optimization approach

نویسندگان

  • Dong Li
  • Shan He
  • Zhisong Pan
  • Guyu Hu
چکیده

Motivation: Searching for active connected subgraphs in biological networks has shown important to identifying functional modules. Most existing active modules identification methods need both network structural information and gene activity measures, typically requiring prior knowledge database and high-throughput data. As a pure data-driven gene network, weighted gene co-expression network (WGCN) could be constructed only from expression profile. Searching for modules on WGCN thus has potential values. While traditional clustering based modules detection on WGCN method covers all genes, unavoidable introducing many uninformative ones when annotating modules. We need to find more accurate part of them. Results: We propose a fine-grained method to identify active modules on the multi-layer weighted (co-expression gene) network, based on a continuous optimization approach (AMOUNTAIN). The multilayer network are also considered under the unified framework, as a natural extension to single layer network case. The effectiveness is validated on both synthetic data and realworld data. And the software is provided as a user-friendly R package. Availability: Available at https://github.com/fairmiracle/AMOUNTAIN Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online. 1 . CC-BY-NC-ND 4.0 International license peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was not . http://dx.doi.org/10.1101/056952 doi: bioRxiv preprint first posted online Jun. 3, 2016;

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Prognostic Genes in Her2-enriched Breast Cancer by Gene Co-Expression Net-work Analysis

Introduction: HER2-enriched subtype of breast cancer has a worse prognosis than luminal subtypes. Recently, the discovery of targeted therapies in other groups of breast cancer has increased patient survival. The aim of this study was to identify genes that affect the overall survival of this group of patients based on a systems biology approach. Methods: Gene expression data and clinical infor...

متن کامل

Exploring Gene Signatures in Different Molecular Subtypes of Gastric Cancer (MSS/ TP53+, MSS/TP53-): A Network-based and Machine Learning Approach

Gastric cancer (GC) is one of the leading causes of cancer mortality, worldwide. Molecular understanding of GC’s different subtypes is still dismal and it is necessary to develop new subtype-specific diagnostic and therapeutic approaches. Therefore developing comprehensive research in this area is demanding to have a deeper insight into molecular processes, underlying these subtypes. In this st...

متن کامل

I-13: Transcriptome Dynamics of Human and Mouse Preimplantation Embryos Revealed by Single Cell RNA-Sequencing

Background: Mammalian preimplantation development is a complex process involving dramatic changes in the transcriptional architecture. However, it is still unclear about the crucial transcriptional network and key hub genes that regulate the proceeding of preimplantation embryos. Materials and Methods: Through single-cell RNAsequencing (RNA-seq) of both human and mouse preimplantation embryos, ...

متن کامل

Systems genetics of environmental response in the mature wheat embryo.

Quantitative phenotypic traits are influenced by genetic and environmental variables as well as the interaction between the two. Underlying genetic × environment interaction is the influence that the surrounding environment exerts on gene expression. Perturbation of gene expression by environmental factors manifests itself in alterations to gene co-expression networks and ultimately in phenotyp...

متن کامل

A general framework for weighted gene co-expression network analysis.

Gene co-expression networks are increasingly used to explore the system-level functionality of genes. The network construction is conceptually straightforward: nodes represent genes and nodes are connected if the corresponding genes are significantly co-expressed across appropriately chosen tissue samples. In reality, it is tricky to define the connections between the nodes in such networks. An...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016